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Exercise: Assumptions underlying
PageRank

= Assumption 1: A link on the web is a quality signal -
the

author of the link thinks that the linked-to page is
high-quality.

= Assumption 2: The anchor text describes the content
of the linked-to page.

= |s assumption 1 true in general?
= Is assumption 2 true in general?
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Google bombs

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in January
2007

that fixed many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing,
Yahoo

= Coordinated link creation by those who dislike the Church of
Scientology

Defused Google bombs: [dumb motherf...], [who is a
failure?], [evil empire]



Origins of PageRank: Citation analysis

(1)

Citation analysis: analysis of citations in the scientific
literature.

Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”

We can view “Miller (2001)” as a hyperlink linking two
scientific articles.

One application of these “hyperlinks” in the scientific
literature:

= Measure the similarity of two articles by the overlap of other
articles citing them.

= This is called cocitation similarity.

= Cocitation similarity on the web: Google’s “find pages like
this” or “Similar” feature.



Origins of PageRank: Citation analysis

(2)

= Another application: Citation frequency can be used to
measure the impact of an article .

= Simplest measure: Each article gets one vote - not very
accurate.

= On the web: citation frequency = inlink count
= A high inlink count does not necessarily mean high quality ...
= ... mainly because of link spam.
= Better measure: weighted citation frequency or citation
rank

= An article’s vote is weighted according to its citation
impact.

= Circular? No: can be formalized in a well-defined way.



Origins of PageRank: Citation analysis

(3)

Better measure: weighted citation frequency or citation
rank.

This is basically PageRank.

PageRank was invented in the context of citation analysis
by Pinsker and Narin in the 1960s.

Citation analysis is a big deal: The budget and salary of
this lecturer are / will be determined by the impact of his
publications!



Origins of PageRank: Summary

= We can use the same formal representation for
= citations in the scientific literature
= hyperlinks on the web

= Appropriately weighted citation frequency is an excellent
measure of quality ...

= ... both for web pages and for scientific publications.

= Next: PageRank algorithm for computing weighted citation
frequency on the web.



Model behind PageRank: Random
walk

Imagine a web surfer doing a random walk on the web
= Start at a random page

= At each step, go out of the current page along one of
the links on that page, equiprobably

In the steady state, each page has a long-term visit
rate.

= This long-term visit rate is the page’s PageRank.

= PageRank = long-term visit rate = steady state
probability.
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= A Markov chain consists of N states, plus an N xN
transition probability matrix P.
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transition probability matrix P.
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Formalization of random walk: Markov
chains

= A Markov chain consists of N states, plus an N xN
transition probability matrix P.

» state = page
= At each step, we are on exactly one of the pages.

= For 1 <1, j >N, the matrix entry P;; tells us the

probability of j being the next page, given we are
currently on page 1.

= Clearly, foralli, ¥ B -1

Py

J




Example web graph

benz

<- ford *‘
honda Ieopami

Jaguar
Uger
, cheetah
aguar
speed cat lion



Link matrix for example



Link matrix for example

dy



Transition probability matrix P for
example
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do
0.00
0.00
0.33
0.00
0.00
0.00
0.00

d;
0.00
0.50
0.00
0.00
0.00
0.00
0.00

d;
1.00
0.50
0.33
0.00
0.00
0.00
0.00

d;
0.00
0.00
0.33
0.50
0.00
0.00
0.33

d,
0.00
0.00
0.00
0.50
0.00
0.00
0.33

ds
0.00
0.00
0.00
0.00
0.00
0.50
0.00

Transition probability matrix P for
example

dg
0.00
0.00
0.00
0.00
1.00
0.50
0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate.

Long-term visit rate of page d is the probability
that a web surfer is at page d at a given point in
time.

Next: what properties must hold of the web graph
for the long-term visit rate to be well defined?

The web graph must correspond to an ergodic
Markov chain.

First a special case: The web graph must not
contain dead ends.
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Dead ends

/
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Dead ends

N

O——0----7

e

= The web is full of dead ends.
= Random walk can get stuck in dead ends.

= |f there are dead ends, long-term visit rates are
not well-defined (or non-sensical).
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Teleporting - to get us of dead ends

= At a dead end, jump to a random web page with
prob.

1/ N.

= At a non-dead end, with probability 10%, jump to a
random web page (to each with a probability of 0.1/N

).
= With remaining probability (90%), go out on a random
hyperlink.

= For example, if the page has 4 outgoing links: randomly
choose one with probability (1-0.10)/4=0.225

= 10% is a parameter, the teleportation rate.

= Note: “jumping” from dead end is independent of
teleportation rate.
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Result of teleporting

= With teleporting, we cannot get stuck in a dead end.

= But even without dead ends in the original graph, we
may not have well-defined long-term visit rates.

= More generally, we require that the Markov chain be
ergodic.
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Ergodic Markov chains

A Markov chain is ergodic if it is irreducible and
aperiodic.

Irreducibility. Roughly: there is a path from any other
page.

Aperiodicity. Roughly: The pages cannot be
partitioned such that the random walker visits the
partitions sequentially.

A non-ergodic Markov chain:

1.0
O=——=0
1.0




Ergodic Markov chains

= Theorem: For any ergodic Markov chain, there is a
unique long-term visit rate for each state.



Ergodic Markov chains
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Ergodic Markov chains

= Theorem: For any ergodic Markov chain, there is a
unique long-term visit rate for each state.

= This is the steady-state probability distribution.

= Over a long time period, we visit each state in
proportion to this rate.
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Theorem: For any ergodic Markov chain, there is a
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This is the steady-state probability distribution.

Over a long time period, we visit each state in
proportion to this rate.

It doesn’t matter where we start.
Teleporting makes the web graph ergodic.

54



Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a
unique long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in
proportion to this rate.
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a
unique long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in
proportion to this rate.

It doesn’t matter where we start.
Teleporting makes the web graph ergodic.

—.. Web-graph+teleporting has a steady-state
probability distribution.

., Each page in the web-graph+teleporting has a
PageRank.
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Formalization of “visit”: Probability
vector

= A probability (row) vector x = (x, , ..., Xy) tells us
where the random walk is at any point.
= Example ( 0 O O .. 1 . 0 O 0 )
1T 2 3 .. 1 .. N-2N-1 N

= More generally: the random walk is on the page i
with probability x..

= Example:
( 0.05 0.01 00 .. 0.2 .. 0.01 0.05 0.03 )
1 2 3 .. i .. N-2 N-1 N

| ZX’=1
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Change in probability vector

= If the probability vector is x = (x, , ..., X,), at this
step, what is it at the next step?

= Recall that row i of the transition probability matrix
P tells us where we go next from state 1.

= So from X, our next state is distributed as xP
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= The steady state in vector notation is simply a vector
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Steady state in vector notation

= The steady state in vector notation is simply a vector
7t = (m,, m,, ..., T) Of probabilities.
= (We use 7 to distinguish it from the notation for the

probability vector x.)
= 7 is the long-term visit rate (or PageRank) of page i.

= So we can think of PageRank as a very long vector -
one entry per page.
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Steady-state distribution: Example

What is the PageRank / steady state in this example?

oq 0.75 pm
3| @=——=@|5
v, | U
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Steady-state distribution: Example

X X3
P.(d,) P.(d,)

P,,=0.25 P,,=0.75
P,,=0.25 P,,=0.75

t, |0.25 0.75  [0.25 0.75
£, 0.25 0.75

(convergence)

PageRank vector = &t = (m;, x,) = (0.25, 0.75)

P(d,
Pi(d)

Py
P

*
*

P.,(dy) « Py + P 4(d,)
d,) - P,

P.,(dy) « Py, + P 4(d;) - Py,
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How do we compute the steady state
vector?

= |n other words: how do we compute PageRank?

= Recall: &t = (ny, m,, ..., ) is the PageRank vector, the
vector of steady-state probabilities ...

= ... and if the distribution in this step is x, then the
distribution in the next step is xP.

= But &t is the steady state!

= So:mw=nP

= Solving this matrix equation gives us .

« 7 is the principal left eigenvector for P ...

« ... that is, & is the left eigenvector with the largest
eigenvalue.

= All transition probability matrices have largest eigenvalue
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One way of computing the PageRank =

= Start with any distribution x, e.g., uniform distribution
= After one step, we’re at xP.

= After two steps, we’re at xP2.

= After k steps, we’re at xPk.

= Algorithm: multiply x by increasing powers of P until
convergence.

= This is called the power method.

= Recall: regardless of where we start, we eventually reach
the steady state .

= Thus: we will eventually (in asymptotia) reach the steady
state.
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Power method: Example

= What is the PageRank / steady state in this example?

[0

N e O
. N 0.3 - ‘
v U

0.7
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Computing PageRank: Power Example

X1 X,
P.(d,) P.(d,)
P, =01 P,,=0.9
P,, = P,,=0.7
t, O 1 0 0.7 = XP
t, = XP?
t, = XP3
t, = XP*
t. = XP~

U o
Sl
| |
U o
a o
R
N
+
o
aQ
°
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t, O 1 0.3 0.7 = xP
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Computing PageRank: Power Example

X, X,
P.(d,) P.(d,)

P, =01 P,=0.9

P,, =03 P,,=0.7
t, 0 1 0.3 0.7 = XP
t, 0.3 0.7 0.24 0.76 = XP?
t, 0.24 0.76 0.252 0.748 = xP3
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t. = XP-
P.(d,) = P_4(dy) - Py; + P.4(d,) « P,
P.(d,) = P.4(d;) - Py, + P y4(d,) « Py,
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t. = XP-
P.(d,) = P_4(dy) - Py; + P.4(d,) « P,
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Computing PageRank: Power Example

X X7
P.(d,) P.(d,)
P,,=0.1 P,=0.9
P,, =03 P,,=0.7
t, O 1 0.3 0.7 = XP
t, 0.3 0.7 0.24 0.76 = xP?
t, 0.24 0.76 0.252 0.748 = xP3
t; 0.252 0.748 0.2496 0.7504 = xP4
t. 0.25 0.75 = XP~
P(dy) = Pq(dy) - Py + P y(dy) - Py
P(dz)=P-1(d1)*P12 Pt-1(d2 *Pzz



Computing PageRank: Power Example

X Xy
P.(d,) P.(d,)
P, =01 P,=0.9
P,, =03 P,,=0.7
t, 0 1 0.3 0.7 = XP
t, 0.3 0.7 0.24 0.76 = XP?
t, 0.24 0.76 0.252 0.748 = xP3
t, 0.252 0.748 |0.2496  0.7504 = xP*
t. 0.25 0.75 0.25 0.75 - XP-
P.(d,) = P_4(dy) - Py; + P.4(d,) « P,
P.(d,) = P.4(d;) - Py, + P y4(d,) « Py,



Computing PageRank: Power Example

X1 i
P.(d,) P.(d;)
P,=01 P,,=0.9
P,y =03 P,=0.7
t, 0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76 = xP?
t, 0.24 0.76 0.252 0.748 = xP3
t, 0.252 0.748 |0.2496  0.7504 = xP*
t. 0.25 0.75 0.25 0.75 = XP-

PageRank vector = nt = (x,, =,) = (0.25, 0.75)
P.(d;) = P.4(dy) « Pyy + P y(dy) « Py
P.(d,) = P_,(d;) - P;; + P4(d,) - Py,



Power method: Example

What is the PageRank / steady state in this example?

(e [

The steady state distribution (= the PageRanks) in this
example are 0.25 for d; and 0.75 for d,.
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X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1
L
£,
£
t

PageRank vector = &t = (%, =,) = (0.4, 0.6)
P.(d;) = P.4(dy) « Pyy + P y(dy) « Py
P.(d,) = P_,(d;) - P;; + P4(d,) - Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
L
£,
£
t

PageRank vector = &t = (%, =,) = (0.4, 0.6)
P.(d;) = P.4(dy) « Pyy + P y(dy) « Py
P.(d,) = P_,(d;) - P;; + P4(d,) - Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8
£,
£
t

PageRank vector = &t = (%, =,) = (0.4, 0.6)
P.(d;) = P.4(dy) « Pyy + P y(dy) « Py
P.(d,) = P_,(d;) - P;; + P4(d,) - Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
£,
£
t

PageRank vector = &t = (%, =,) = (0.4, 0.6)
P.(d;) = P.4(dy) « Pyy + P y(dy) « Py
P.(d,) = P_,(d;) - P;; + P4(d,) - Py,



Solution

X4 Wi
P.(d) P.(d)
P,,=0.7 P,,=0.3
P,,=0.2 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7
t3
t.
PageRank vector = &t = (%, =,) = (0.4, 0.6)

P.(d,) = P_,(d,) - P;; + P.(d,) - P,
P.(d,) = P.4(d;) « Py, + P 4(d,) « Py,

P,
P



Solution

X1 x2
P.(d,) P.(d,)
P,,=0.7 P,,=0.3
P,,=0.2 P,,=0.8
t, 0 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t3
t,

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,



Solution

X1 x2
P.(d,) P.(d,)
P,,=0.7 P,,=0.3
P,,=0.2 P,,=0.8
t, 0 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t; 0.35 0.65
t,

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t; 0.35 0.65 0.375 0.625
L.

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t; 0.35 0.65 0.375 0.625
L.

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,



Solution

X4 Wi
P.(d) P.(d)
P,=07 P,=0.3
P, =02 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t; 0.35 0.65 0.375 0.625
t. 0.4 0.6

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,



Solution

X1 i
P.(d,) P.(d;)
P,=07 P,=0.3
P,,=0.2 P,,=0.8
t, O 1 0.2 0.8
t, 0.2 0.8 0.3 0.7
t, 0.3 0.7 0.35 0.65
t; 0.35 0.65 0.375 0.625
t., 0.4 0.6 0.4 0.6

PageRank vector = xt = (%, w,) =
Pi(dy) = Pi4(dy) « Pyy + Pey(dy) - P
P

(0.4, 0.6)

1
P.(d,) = P.4(d;) » Py, + P4(d,) « Py,
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PageRank summary

= Preprocessing
= Given graph of links, build matrix P
= Apply teleportation
= From modified matrix, compute n

= m; is the PageRank of page i.

= Query processing
= Retrieve pages satisfying the query
= Rank them by their PageRank
= Return reranked list to the user



PageRank issues

= Real surfers are not random surfers.

= Examples of nhonrandom surfing: back button, short vs. long
paths, bookmarks, directories - and search!

= — Markov model is not a good model of surfing.
= But it’s good enough as a model for our purposes.

= Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

= Consider the query [video service].

= The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.

= |f we rank all pages containing the query terms according to
PageRank, then the Yahoo home page would be top-ranked.

= Clearly not desirable.



How important is PageRank?

= Frequent claim: PageRank is the most important
component of web ranking.

= The reality:

= There are several components that are at least as

important: e.g., anchor text, phrases, proximity, tiered
indexes ...

= Rumor has it that PageRank in his original form (as presented
here) now has a negligible impact on ranking!

= However, variants of a page’s PageRank are still an essential
part of ranking.

= Addressing link spam is difficult and crucial.



